Over 500 References Supporting EDTA Chelation

8. Windsor E, Cronheim GE (Riker Labs, Inc.). Gastrointestinal absorption of heparin and synthetic heparinoids. Nature. 1961; 190:203-204. (CA55:23818a) [Heparin Na U.S.P. and the K salt of sulfopolyglucin can be absorbed from the gastrointestinal tract when given orally with an alk. salt of ethylenediaminetetraacetic acid (I). The chelation of Ca and (or) Mg ions by I may be involved.]

26. Myslak Z, Buczkowski M. The effect of calcium versenate (Ca-EDTA) on the kidney in the treatment of lead poisoning. Polskie Archiwum Medycyny Wewntrznej. 1961; 31:853-856. (2304) [Kidney function tests (creatinine clearance, RN) were carried out on 20 out of 120 cases of chronic Pb poisoning treated by oral administration of CaEDTA. The results showed no harmful effect of EDTA on the kidneys during treatment.]

32. McMahon FG. Comparison of the effect of Fe 3-specific (N, N-dihydroxyethylglycine), versenol, and calcium disodium versenate on urinary iron excretion in a patient with hemochromatosis. J Lab Clin Med. 1956; 48:589-602. (CA51:3027c)

34. Manville IA, Moser R. Recent developments in the care of workers exposed to lead. The effect of the calcium chelate of disodium ethylenediamine-tetraacetic acid on led in the blood and urine of battery workers. AMA Arch Ind Health. 1955; 12:528-538 (Nov.). (1587)

[An A review with many refs. Iron EDTA]

44. Cohn SH. The effect of chemical agents on the skeletal content and excretion of internally deposited fission products. US Atomic Energy Comm. ANL-5584. 1956; 144-149. (CA51:4557f)

49. Davies NM, Jamali F. Pharmacological protection of NSAID-induced intestinal permeability in the rat: effect of tempo and metronidazole as potential free radical scavengers. Hum Exp Toxicol. 1997; 16(7): 345-349. (CA)

52. Mariani B, Bisetti A, Romeo V. Blood-cholesterol-lowering action of the sodium salt of calciummethylenediaminetetraacetic acid. Gazs Intern Med Chir. 1957; 62: 1812-1823. (CA51:16953c) [Two g. daily of the drug, in 2 intravenous administrations, or (with a lower effect) by mouth or rectum, caused in humans a decrease of blood cholesterol, especially of its free fraction.]

58. Telsinger J, Srbova J. Effect of D-penicillamine on the urinary excretion of mercury and lead. Pracovni Lekarstvi 16. 1964; 10: 433-435. (2827) [Seven patients with chronic Pb poisoning were treated with daily oral doses of 150 mg D-penicillamine for 4-7 days. Urinary excretion of Pb increased about 4-fold which is practically as much as after administration of 0.5-g tablets of CaEDTA, 4 times/day. If future studies confirm its lower toxicity in long-term administration, D-penicillamine may replace EDTA.]

77. Stancev S. Prophylaxis of chronic lead poisoning by oral administration of CaNa2EDTA. First National Congress of Industrial Health. Abstracts of papers. 1963; 37-38. (2634)
78. Taucin EJ, Svilane ABV. Effect of EDTA and chlortetracycline on assimilation of trace elements by chickens. Fiziologiceski aktivnye komponenty pitanija zivotnyh. 1969; 163-170 Russian. (NA41)

79. Suenaka T, Miyajima K, Kosaka H, Tabuchi T, Hara I. Urinary excretion of heavy metals following oral administration of calcium-EDTA. Osaka-furitsu Koshu Eisei Kenkyu Kenkyu Hokoku, Rodo Eisei Hen. 1977; 15:27-31. (CA) [Ca EDTA, administered to workers dealing with Pb, significantly increased Pb and Zn excretion in urine. There was a high correlation between urinary total metal and Zn concns.]

88. Reinf W. Prophylaxis of lead workers with orally administered Ca2EDTA. Zentralblatt fur Arbeitsmedizin und Arbeitsschutz. 1956; 6:5-8 (Jan.). (1709)

89. Reinf W. Modern therapy of lead intoxication. Regensburger Jahrbuch fur Hrztliche Fortbildung. 1959/60; 8:(8 pp). (2184)

90. Roxburgh RC, Haas L. The diagnostic importance of glycosuria in lead poisoning in childhood. Arch Dis in Childhood. 1959; 34:70-73 (Feb.). (2957)

114. Stankovic M, Petrovic LJ, Poleti D. Application of Ca2EDTA (dicalcium ethylenediamine-tetraacetate) for the diagnosis of lead poisoning. Acta Pharm. Jugoslav. 1960; 10:155-159. (2202) The compound was administered orally to 24 printers, 18 persons with severe Pb poisoning, and 8 controls with no Pb exposure. The upper limit of Pb excretion in urine after 3 g CaEDTA was 0.340 mg/24 hr.

119. Preda N, Niculescu T, Rafaila E. The treatment of lead intoxication with chelating agents. Igiena (Bucharest)13. 1964; 3:233-242. (2784) Treatment of Pb-poisoned patients in the Clinic for Occupational Diseases, Bucharest, with iv injections of 2 g CaNa2EDTA/day for 2-20 days markedly increased urinary excretion of Pb. Oral doses of 4-6 g EDTA/day were less effective.

135. Atkinson J, Vohra P, Kratzer FH. Effect of available dietary zinc on the utilization of protein by the chick and Japanese quail. Brit. J Nutr. 1972; 27(3):461-466. (CA77) [By using chicks and quail to measure net protein utilization (NPU) and true digestibility of N of isolated soybean protein and a mixt. of gelatin and casein in Zn-deficient diets, it was found that NPU for both was increased when the diets were supplemented with Zn or di-Na EDTA, as was the true digestibility of N of isolated soybean protein.]

156. Food and Drug Administration, HHS (USA). Food additives permitted for direct addition to food for human consumption; calcium disodium EDTA and disodium EDTA. Fed. Regist. 2000; 65(153):48377-48379. (CA)

183. LaChance LE. Ingestion of ethylenediaminetetraacetic acid and the effect on life span of irradiated and control Habrobracon females. Nature. 1958; 182:870-871. (CA53:4587h)

196. Will JJ, Vilter RW. The absorption and utilization of an iron chelate in iron-deficient patients. J Lab. Clin. Med. 1954; 44:499-505. (CA49:1961g) Ferric sodium ethylenediaminetetraacetate (I) was given orally, and the absorption and utilization were compared with oral FeSO4 (II). I and II were labeled with isotopic Fe. I was absorbed to the same extent as II (about 6%). No detectable amt. was excreted in the urine. I and II produced identical reticulocyte responses. The observations suggested that I is split in the gastrointestinal tract into ionized Fe and that this is absorbed in the usual manner.

222. Anon. Disodium EDTA (Disodium ethylenediaminetetraacetate). Federal Register, cf. CA 57, 12964d. Nov. 1962; 27:11257. (CA58:3821f) [The previous regulation under the Federal Food, Drug, and Cosmetic Act is extended to permit the use of a max. of 100 p.p.m. of the title compd. as a color preservative in frozen white potatoes.]

224. Anon. Food additives. Boiler water additives. Federal Register, cf. CA 58, 10661b. Oct. 16, 1964; 29:14224. (16697c) [Tetrasodium EDTA may be used under the Federal Food, Drug and Cosmetic Act as a boiler water additive in the prepn. of steam that will contact food.]

227. Anon. Food additives. Calcium disodium EDTA. Federal Register, cf. CA 55, August 29, 1961; 26:8072. (CA55:23853h) [One hundred p.p.m. of the title compd. may be used under the Federal Food, Drug, and Cosmetic Act in pecan pie fillings to prevent discoloration.]

228. Anon. Food additives. Calcium disodium ethylenediaminetetraacetate. Federal Register, cf. CA 55, 4811c. Apr. 4, 1961; 26:2780. (CA55:10737c) [The previous regulations under the Federal Food, Drug, and Cosmetic Act are revised to permit 275 p.p.m. of the title compd. (calcd. as anhyd. compd.) in or on cooked, canned crabmeat and 250 p.p.m. in or on cooked, canned shrimp to retard struvite formation and to promote color retention.]

229. Anon. Food additives. Calcium disodium EDTA. Federal Register, cf. CA 66:94047h. May 2, 1967; 32:6686. (CA67) [The title compd. may be used under the Federal Food, Drug and Cosmetic Act at a max. level of 200 ppm. to stabilize the color of canned mushrooms.]

235. Anon. Food additives. Disodium EDTA. Federal Register, cf. CA 60, 13801c. Aug. 28, 1964; 29:12364-12365. (CA61:12544d) [The previous regulation under the Federal Food, Drug, and Cosmetic Act is revised to permit the use of di-Na EDTA to promote color retention in dried banana products (315 p.p.m. max.) used as a component of cereal products and in canned cooked chickpeas (165 p.p.m. max.).]

236. Anon. Food additives. Disodium EDTA. Federal Register, June 18, 1965; 30:7895. (CA63:6238b) [Disodium EDTA, min. 99% dihydrate, may be used under the Federal Food, Drug, and Cosmetic Act as a max. level of 240 ppm. to solubilize trace minerals in aq. solns. which are added to ruminant feeds.]

237. Anon. Food additives. Disodium EDTA. Federal Register, cf. CA 71:100539s. Jun 10, 1970;35(112):8930-8931. (CA73) [Di-Na EDTA may be used under the U.S. Federal Food, Drug, and Cosmetic Act in gefilte fish balls or patties in the packaging medium at a max. level of 50 ppm (total wt. of fish and medium) to inhibit discoloration.]

239. Anon. Food additives. Disodium EDTA. Federal Register, cf. CA 62:7027h. April 25, 1967; 32:6393. (CA67) [Di-Na EDTA may be used under the Federal Food, Drug, and Cosmetic Act as a sequestrant with nonnutritive sweeteners designed for use in aq. soln. at a max. level, calcd. as anhyd. Ca di-Na EDTA, of 0.1% of the wt. of the dry nonnutritive sweetener.]

262. Bi C-P (Chang-Tai Co. Ltd., Taiwan). Use of EDTA in foods. Shih Pin Kung Yeh (Hsinchu, Taiwan). 1978; 10(2):23-30. (CA) [A review with no refs. on the application of EDTA (60-00-4) in food processings; the phys. and chem. properties of EDTA are also discussed.]

282. Child GP. The inhibition of hematopoietic action of cobalt by ethylenediamine tetraacetic acid (EDTA). Science. 1951; 114:466-467. (CA46:2648i) [A Purina dog chow diet contg. 0.1% Co when fed to Wistar rats increased the red cell count and the hemoglobin content. Addn. of 5% EDTA completely inhibited the Co effect, while lower concns. (1% and 0.2%) only diminished the Co action.]

286. Cotter LH. Treatment of cadmium poisoning with edathamil calcium disodium. J Am. Med. Assoc. 1958; 166:735-736. (CA52:10388a) [Cd intoxication was treated successfully with oral edathamil Ca di-Na (Ca di-Na ethylenediaminetetraacetate). The Ca of the chelating agent was replaced by Cd and excreted in a nonirritating form through the kidneys.]

304. Ely CM (to National Distillers Products Corp.). Chick feed containing tri- or tetra-sodium ethylenediaminetetraacetate. U.S. 2,604,401, July 22, 1952. (CA46:11504b) [Chick growth is accelerated by the admn. to the diet of 0.15-0.200%, based on the total amt. of food, air-dry basis, of either tri- or tetra-Na ethylenediaminetetraacetate. The admn. of 0.030 to 0.090% (the optimum amt.) accelerates growth 5%, although growth continues to be accelerated up to 0.200%.

316. Durbin PW, Scott KG, Hamilton JC. The distribution of radioisotopes of some heavy metals in the rat. Univ. of Calif. Publ. in Pharmacol 3. 1957; 1:1-34. (716)

320. Fukuda S, Lida H, Hsei HYY, Chen W. Toxicological study of DTPA as a drug. VI. Effects of intravenously injected calcium diethylenetriamine pentaacetic acid (Ca-DTPA), calcium ethylenediaminetetraacetic acid (Ca-EDTA), catechol-3,6-bis(methyleneiminodiacetic acid (CBMIDA) and orally administered zinc DTPA to bone metabolism in beagle dogs. Hoken Butsuri. 1991; 26(2):101-107. (CA)

369. LaChance LE. The effect of chelation and x-rays on fecundity and induced dominant lethals in Habrobracon (Bracon). Radiation Res. 1959; 11:218-228. (CA54:664a)

372. Lange J, Pickardt E, Weining E. Diagnosis and therapy of lead injury by complex formers. Arztliche Wochenschrift. 1959; 14:105-111. (2034)

387. Loren K. Dr. Garry F. Gordon world's leading medical advocate of oral chelation. Life flow one the solution for heart disease. 21 p. computer printout.
388. Makashev KK, Akhmedova AS. The effect of ethylenediaminetetraacetate (EDTA) and cortisone on the distribution of phosphorus and calcium in organs and tissues and their excretion from the system after lead intoxication. Trudy Instituta Kraevoi Patologii, Akademiya Nauk Kazakhskoi SSR. 1962; 10:190-197. (1009)

389. Makeeva LG, Pavlovskaya NA, Orlyanskaya RL. The distribution of thorium in rat liver depending on the route of administration and chemical nature of the compounds introduced. Med. Radiol. 1968; 13(9):50-63. (CA70)

393. McLean AEM. Phenergan and versene in dietary liver necrosis. Nature. 1960; 185:191-192. (CA54:16652b) [The decline in O uptake of liver slices of weanling rats fed a necrogenic diet was prevented by the addn. of 10-4M Phenergan or 10-3M Versene. The addn. of Phenergan to the necrogenic diet delayed the onset of massive liver necrosis.]

408. Skorkowska-Zieleniewska J, Bartnik J, Mentel M. Preliminary studies on the effect of versenates on the organism in the light of views on possibilities of the use of these compounds in the food industry. Przem. spoz. 1969; 23:237-240. (NA40)

411. Sullivan TJ. Effect of manganese edetate (ethylenediaminetetraacetate) on blood formation in rats. Nature. 1960; 186:87. (CA54:17592e) [A severe but reversible Fe-deficiency anemia was produced in immature but not in adult rats by feeding a diet contg. 4% Mn edetate.]

433. Vozar L, Simko V. The blood picture of rats given Komplexon 3 (disodium ethylenediaminetetraacetate). Biologia. 1959; 14:611-617. (CA54:23065d)

Vozar L. Iron balance and level in the organism after the administration of disodium salt of ethylenediaminetetraacetic acid. Ceskoslov. gastroenterol. vyziva. 1959; 13:261-269. (CA54:10158c)

Willoughby RPN, Harris KA, Carson MW, Martin CM, Troster M, DeRose G, Jamieson WG, and Potter RF. Intestinal mucosal permeability to 51-Cr-ethylenediaminetetraacetic acid is increased after bilateral lower extremity ischemia-reperfusion in the rat. Surgery. 1996; 120:547-553.

Wilson BB, Wortharm JS. (Allied Chemical Corp.) Urea-containing ruminant feed comprising inhibitors of urease enzymes. U.S. 3,644,642 (Cl. 167-53), May 2, 1967. Appl. June 18, 1962; 3 pp. (CA67) [The administration of a chelating agent such as EDTA prevents bloat in ruminants by reducing free Mg and Ca ions in the rumen. The chelating agent should be given orally at least once every 24 hours. The dose depends on species and age of the animals.]

Wu CL. Zinc and manganese requirements of Tsai Ya ducklings and factors affecting requirements. Chung-hua Nung Hsueh Hui Pao. 1982; 119:75-85. (CA)

478. Pavlovskaya NA, Provotorov AV, Makeeva LG. Resorption of thorium from the gastrointestinal tract by the blood and its accumulation in organs and tissues of rats. Gig. Sanit. 1971; 36(5):47-50. (CA75)

482. Powell GW. Effects of dietary EDTA and cadmium on absorption, excretion, and retention of orally administered 65Zn in various tissues of zinc-deficient and normal goats and calves. Dissertation Absts. (B). 1967; 28:2203B. (NA38)

495. Savicevic M, Ptrovic L, Stankovic M, Poleti D. Prophylactic oral administration of Mosatil in lead exposed workers. II. Administration of 1- and 3-g, Mosatil tablets per day. Zentralblatt Arbeitsmedizin Arbeitsschutz. 1959; 9:289-292. (2064)

499. Savicevic M, Petrovic L, Stankovic M, Djordjevic S. Prophylactic oral administration of Ca2EDTA (Mosatil-Bayer) to workers exposed to lead. I. Administration of 2 g Ca2EDTA per day. Zentralblatt Arbeitsmedizin Arbeitsschutz. 1959; 9:180-185. (2063)

505. Shaw JH, Gupta OP. The relation of a chelating agent to smooth-surface lesions in the white rat. J Nutr. 1956; 60:311-322. (CA51:12323a) [The results suggest that the smooth surface lesions observed were more likely to be closely related or identical to smooth surface caries than to be the result of the simple process of decalcification of tooth substance by chelation with ethylenediaminetetraacetic acid.]

Gordon Research Institute / Reference Material